Particle Approximation of Some Landau Equations
نویسنده
چکیده
Abstract. We consider a class of nonlinear partial-differential equations, including the spatially homogeneous Fokker-Planck-Landau equation for Maxwell (or pseudo-Maxwell) molecules. Continuing the work of [6, 7, 4], we propose a probabilistic interpretation of such a P.D.E. in terms of a nonlinear stochastic differential equation driven by a standard Brownian motion. We derive a numerical scheme, based on a system of n particles driven by n Brownian motions, and study its rate of convergence. We finally deal with the possible extension of our numerical scheme to the case of the Landau equation for soft potentials, and give some numerical results.
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملLandau–zener Effect in Superfluid Nuclear Systems
The Landau–Zener effect is generalized for many-body systems with pairing residual interactions. The microscopic equations of motion are obtained and the C decay of Ra spectroscopic factors are deduced. An asymmetric nuclear shape parametrization given by two intersected spheres is used. The single particle level scheme is determined in the frame of the superasymmetric two-center shell. The def...
متن کاملAnalysis and Approximation of the Ginzburg-Landau Model of Superconductivity
The authors consider the Ginzburg-Landau model for superconductivity. First some well-known features of superconducting materials are reviewed and then various results concerning the model, the resultant differential equations, and their solution on bounded domains are derived. Then, finite element approximations of the solutions of the Ginzburg-Landau equations are considered and error estimat...
متن کاملFinite Element Methods for the Time-Dependent Ginzburg-Landau Model of Superconductivity
The initial-boundary value problem for the time-dependent Ginzburg-Landau equa, tions that model the macroscopic behavior of superconductors is considered. The convergence of finite-dimensional, semidiscrete Galerkin approximations is studied as is a fully-discrete scheme. The results of some computational experiments are presented. Keywords-Superconductivity, Timedependent Ginzburg-Landau equa...
متن کامل